Abstract

The molecular mechanisms underlying the pathophysiology of heat stress in the small intestine remain undefined. Furthermore, little information is available concerning changes in microRNA (miRNA) expression following heat stress. The present study sought to evaluate miRNA and mRNA expression profiles in the rat small intestine in response to heat stress. Male Sprague-Dawley rats were subjected to 2h of heat stress daily for ten consecutive days. Rats were sacrificed at specific time points immediately following heat treatment, and morphological changes in the small intestine were determined. The miRNA and mRNA expression profiles from sample of small intestine were evaluated by microarray analysis. Heat stress caused pronounced morphological damage in the rat small intestine, most severe within the jejunum after 3days of heat treatment. A mRNA microarray analysis found 270 genes to be up-regulated and 122 genes down-regulated (P ≤ 0.01, ≥2.0-fold change) in the jejunum after heat treatment. A miRNA microarray analysis found 18 miRNAs to be up-regulated and 11 down-regulated in the jejunum after heat treatment (P ≤ 0.05). Subsequent bioinformatic analyses of the differentially expressed mRNAs and miRNAs were carried out to integrate miRNA and mRNA expression and revealed that alterations in mRNA following heat stress were negatively correlated with miRNA expression. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of heat stress-induced injury in the small intestine, specifically with regard to miRNAs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call