Abstract
Learning preferences from assignment examples has attracted considerable attention in the field of multi-criteria sorting (MCS). However, traditional MCS methods, designed to infer decision makers’ preferences from small-scale assignment examples, encounter limitations when confronted with large-scale data sets. Additionally, the presence of decision makers’ non-monotonic preferences for certain criteria in MCS problems necessitates accounting for potential non-monotonicity when devising preference learning methods. To address this, this paper proposes some new models to learn potentially non-monotonic preferences for MCS problems from large-scale assignment examples by leveraging machine learning models. Specifically, we first introduce the Piecewise-Linear Neural Network (PLNN) model, which leverages the threshold-based value-driven sorting procedure as the underlying sorting model and integrates a perceptron-based model to establish piecewise-linear marginal value functions to approximate real ones. On this basis, we address MCS problems with criteria interactions and extend the PLNN model to develop the Piecewise-Linear Factorization Machine-based Neural Network (PLFMNN) model by incorporating the factorization machine to factorize interaction coefficients. Training these models allows us to learn potentially non-monotonic preferences of decision makers. To illustrate the proposed models, we apply them to a red wine quality classification problem. Furthermore, we assess the performance of the proposed models through computational experiments on both artificial and real-world data sets. Additionally, we conduct statistical tests to ascertain the significance of the performance differences. Experimental results reveal that the proposed models are comparable to the multilayer perceptron model and outperform other baseline models on most data sets, thus affirming their efficacy. Finally, we conduct some sensitivity analysis to assess the impact of certain parameters on the performance of the proposed models and compare them with existing studies from a theoretical perspective, further demonstrating their effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.