Abstract
Dimensionality reduction plays an important role in many machine learning tasks. This paper studies semi-supervised dimensionality reduction using pairwise constraints. In this setting, domain knowledge is given in the form of pairwise constraint, which specifies whether a pair of instances belongs to the same class (must-link constraint) or different classes (cannot-link constraint). In this paper, a novel semi-supervised dimensionality reduction method called LGS3DR is proposed, which can integrate both local and global topological structures of the data as well as pairwise constraints. The LGS3DR method is effective and has a closed form solution. Experiments on data visualization and face recognition show that LGS3DR is superior to many existing dimensionality reduction methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.