Abstract
Abstract Spectral retrieval techniques are currently our best tool to interpret the observed exoplanet atmospheric data. Said techniques retrieve the optimal atmospheric components and parameters by identifying the best fit to an observed transmission/emission spectrum. Over the past decade, our understanding of remote worlds in our galaxy has flourished thanks to the use of increasingly sophisticated spectral retrieval techniques and the collective effort of the community working on exoplanet atmospheric models. A new generation of instruments in space and from the ground is expected to deliver higher quality data in the next decade; it is therefore paramount to upgrade current models and improve their reliability, their completeness, and the numerical speed with which they can be run. In this paper, we address the issue of reliability of the results provided by retrieval models in the presence of systematics of unknown origin. More specifically, we demonstrate that if we fit directly individual light curves at different wavelengths (L-retrieval), instead of fitting transit or eclipse depths, as it is currently done (S-retrieval), the said methodology is more sensitive against astrophysical and instrumental noise. This new approach is tested, in particular, when discrepant simulated observations from Hubble Space Telescope/Wide Field Camera 3 and Spitzer/IRAC are combined. We find that while S-retrievals converge to an incorrect solution without any warning, L-retrievals are able to flag potential discrepancies between the data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.