Abstract
Signal transduction from non-nucleic acid ligands (small molecules and proteins) to structural changes of nucleic acids plays a crucial role in both biomedical analysis and cellular regulations. However, how to bridge between these two types of molecules without compromising the expandable complexity and programmability of the nucleic acid nanomachines is a critical challenge. Compared with the previously most widely applied transduction strategies, we review the latest advances of a kinetically controlled approach for ligand-oligonucleotide transduction in this Concept article. This new design works through an intrinsic conformational alteration of the nucleic acid aptamer upon the ligand binding as a governing factor for nucleic acid strand displacement reactions. The functionalities and applications of this transduction system as a ligand converter on biosensing and DNA computation are described and discussed. Furthermore, we propose some potential scenarios for utilization of this ligand transduction design to regulate gene expression through synthetic RNA switches in the cellular contexts. Finally, future perspectives regarding this ligand-oligonucleotide transduction platform are also discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.