Abstract

Abstract As food demand increases, it is critical to develop effective strategies and evaluate their potential in reducing Greenhouse Gas (GHG) emissions and other environmental footprints of large-scale agricultural systems. This study addresses the challenge by developing a dynamic system modeling framework integrating Life Cycle Assessment (LCA), Agent-Based Modeling (ABM), and Techno-Economic Analysis (TEA). LCA and TEA were coupled with dynamic simulation models of crop yields, costs, and prices, allowing for the estimation of life-cycle environmental impacts and profitability of crop planting activities under changing climate and economic conditions. The framework was demonstrated by a case study for an agricultural system, including 1,000 farms in the United States over a 30-year time frame. The results indicated that information exchange among farmers, farmers' environmental awareness, access to environmental information, and farm size are key factors driving the system's environmental impacts. The results can provide a broad range of stakeholders (e.g., policymakers, nonprofits, agriculture companies) with insightful information to tailor their strategies for effectively managing the environmental footprints of large-scale agricultural systems. The integrated modeling framework has the potential to address sustainability challenges in other systems that are dynamic, involve human behaviors, and have complex interactions among human and nature systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call