Abstract

Image-Text Matching (ITM) aims to establish the correspondence between images and sentences. ITM is fundamental to various vision and language understanding tasks. However, there are limitations in the way existing ITM benchmarks are constructed. The ITM benchmark collects pairs of images and sentences during construction. Therefore, only samples that are paired at collection are annotated as positive. All other samples are annotated as negative. Many correlations are missed in these samples that are annotated as negative. For example, a sentence matches only one image at the time of collection. Only this image is annotated as positive for the sentence. All other images are annotated as negative. However, these negative images may contain images that correspond to the sentences. These mislabeled samples are called <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">false negatives</i> . Existing ITM models are optimized based on annotations containing mislabels, which can introduce noise during training. In this paper, we propose an ITM framework integrating Language Guidance ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">LG</i> ) for correcting false negatives. A language pre-training model is introduced into the ITM framework to identify false negatives. To correct false negatives, we propose language guidance loss, which adaptively corrects the locations of false negatives in the visual-semantic embedding space. Extensive experiments on two ITM benchmarks show that our method can improve the performance of existing ITM models. To verify the performance of correcting false negatives, we conduct further experiments on ECCV Caption. ECCV Caption is a verified dataset where false negatives in annotations have been corrected. The experimental results show that our method can recall more relevant false negatives. The code is available at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/AAA-Zheng/LG_ITM</uri> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.