Abstract
Optimal solutions of several variants of the probabilistic reasoning problem were found by a new technique that integrates integer programming and probabilistic deduction graphs (PDG). PDGs are extended from deduction graphs of the and-type via normal deduction graphs. The foregoing variants to be solved can involve multiple hypotheses and multiple evidences where the former is given and the latter is unknown and being found or vice versa. The relationship among these hypotheses and evidences with possible intermediaries is represented by a causal graph. The proposed method can handle a large causal graph of any type and find an optimal solution by invoking a linear integer programming package. In addition, formulating the reasoning problem to fit integer programming takes a polynomial time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.