Abstract

Combined small and wide angle synchrotron x-ray scattering (SAXS and WAXS) techniques have been developed for in situ high pressure samples, enabling exploration of the atomic structure and nanoscale superstructure phase relations. These studies can then be used to find connections between nanoparticle surfaces and internal atomic arrangements. We developed a four-axis control system for the detector, which we then employed for the study of two supercrystals assembled from 5 nm Fe(3)O(4) and 10 nm Au nanoparticles. We optimized the x-ray energy and the sample-to-detector distance to facilitate simultaneous collection of both SAXS and WAXS. We further performed in situ high pressure SAXS and WAXS on a cubic supercrystal assembled from 4 nm wurtzite-structure CdSe nanoparticles. While wurtzite-structure CdSe nanoparticles transform into a rocksalt structure at 6.2 GPa, the cubic superstructure develops into a lamellarlike mesostructure at 9.6 GPa. Nanoparticle coupling and interaction could be enhanced, thus reducing the compressibility of the interparticle spacing above ∼3 GPa. At ∼6.2 GPa, the wurtzite-to-rocksalt phase transformation results in a noticeable drop of interparticle spacing. Above 6.2 GPa, a combined effect from denser CdSe nanoparticle causes the interparticle spacing to expand. These findings could be related to a series of changes including the surface structure, electronic and mechanical properties, and strain distribution of CdSe under pressure. This technique opens the way for exploring the new physics of nanoparticles and self-assembled superlattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.