Abstract

Inter-basin water diversion (IBWD) is a viable strategy to tackle water scarcity and quality degradation due to climate change and increasing water demand in headwaters regions. Nevertheless, the capacity of IBWD to mitigate the impacts of climate change on water quality has rarely been quantified, and the underlying processes are not well understood. Therefore, this study aims to elucidate how the IBWD manipulated total phosphorus (TP) loading dilution and conveying patterns under climate change and determine a critical threshold for the quantity of water entering downstream reservoirs (WIN) for operational scheduling. To resolve this issue, climate-driven hydrologic variability over a 60-year period was derived utilizing the least square fitting approach. Subsequently, six scenarios evaluating the response of in-lake TP concentrations (TPL) to increased temperatures and IBWDs of 50 %, 100 %, and 150 % from the baseline water volume in 2030 and 2050 were studied by employing a calibrated hydrological-water quality model (SWAT-YRWQM). In the next stage, three datasets derived from mathematical statistics based on the observed data, the Vollenweider formula, and modeled projections were integrated to formulate best management practices. The results revealed that elevated air temperatures would lead to reduced annual catchment runoff but increased IBWD. Additionally, our study quantified the IBWD potential for mitigating water quality degradation, indicating the adverse effects of climate change on TPL would be weakened by 4.2–14.4 %. A critical threshold for WIN was also quantified at 617 million m3, maintaining WIN at or near 617 million m3 through optimized operational scheduling of IBWD could effectively restrict external inflow TP loading to lower levels. This study clearly illustrates the intricate interactive effects of climate change and IBWD on aquatic environments. The methodology elucidated in this study for determining the critical threshold of WIN could be applied in water management for analogous watershed-receiving waterbody systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call