Abstract

Congestion management in deregulated electricity systems threatens system security and reliability. Integration of renewable energy sources, unpredictable wind power, load demand, and the requirement for quickly deployable reserves make congestion management more difficult. While deciding the dispatch of the generating units, many factors have to be considered for the economic, secure, and reliable operation of the power system. This study presents a congestion management strategy that has been developed specifically for hybrid power systems. Within a pool and bilateral power supply market structure, it introduces a generator rescheduling-based congestion management technique. Ensuring safe bilateral transactions between these companies is crucial. Renewable sources affect congestion management dynamics, according to the research. The optimization issue includes operational limitations for scenarios with and without renewable source units. Monte Carlo simulation (MCS) was used to sample hourly wind speed from the Weibull PDF wind model. GAMS CONOPT solver used the model. General Algebraic Modeling System (GAMS)-MATLAB interface imported the model into MATLAB to extract the response. The best combination of renewable sources is 2 hydro + 1 wind unit as savings of congestion cost are $1403.6/h and $1855.18/h in case 1 (3-line congestion) and case 2 (2-line congestion), respectively. Results were accomplished by updating the IEEE-24 bus reliability test system with hydro and wind generators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.