Abstract

Addressing the global challenges to water security requires a better understanding of humanity's use of water, especially the agricultural sector that accounts for 70% of global withdrawals. This study combined high resolution-data with a GIS system to analyze the impact of agricultural practices, crop type, and spatial factors such as drainage basins, climate, and soil type on the Water Footprint (WF) of agricultural crops. The area of the study, the northern Lower Jordan Valley, covers 1121 ha in which three main plantation crops are grown: banana (cultivated in open-fields or net-houses), avocado and palm-dates. High-resolution data sources included GIS layers of the cultivated crops and a drainage pipe-system installed in the study area; meteorological data (2000–2013); and crop parameters (yield and irrigation recommendations). First, the study compared the WF of the different crops on the basis of yield and energy produced as well as a comparison to global values and local irrigation recommendations. The results showed that net-house banana has the lowest WF based on all different criteria. However, while palm-dates showed the highest WF for the yield criteria, it had the second lowest WF for energy produced, emphasizing the importance of using multiple parameters for low and high yield crop comparisons. Next, the regional WF of each drainage basin in the study area was calculated, demonstrating the strong influence of the Gray WF, an indication of the amount of freshwater required for pollution assimilation. Finally, the benefits of integrating GIS and WF were demonstrated by computing the effect of adopting net-house cultivation throughout the area of study with a result a reduction of 1.3 MCM irrigation water per year. Integrating the WF methodology and local high-resolution data using GIS can therefore promote and help quantify the benefits of adopting site-appropriate crops and agricultural practices that lower the WF by increasing yield, reducing water consumption, and minimizing negative environmental impacts.

Highlights

  • Water is the ultimate renewable resource, yet in many areas of the world, especially in arid and semi-arid area, surface and sub-surface water resources are at record-low levels and suffer of increasing levels of pollution

  • The WFregional for each crop and for each drainage basin was calculated for the entire study area

  • A scenario showing the potential of modeling changes to test their impact on the regional Water Footprint (WF), was evaluated by testing the impact of replacing all open-field banana with net-house banana

Read more

Summary

Introduction

Water is the ultimate renewable resource, yet in many areas of the world, especially in arid and semi-arid area, surface (lakes and reservoirs) and sub-surface (aquifers) water resources are at record-low levels and suffer of increasing levels of pollution. Spread of urbanization, and large-scale water diversion projects will further reduce the availability of water, especially in arid and semi-arid regions, while population growth and improvements in the standard of living will increase demand. The expected combined effect of these factors is the intensification of existing pressures on water-resources throughout the twenty-first century (Vörösmarty et al, 2010; Turral et al, 2011; Richey et al, 2015). Failure to address these pressures can lead to adverse changes in water quality that will affect human health, ecosystems, and water availability (Field et al, 2014). Proper management, utilization and understanding of water consumption in the agricultural sector is key in tackling the growing threats of water shortages and the resulting geopolitical instability caused by increasing food prices (Molden, 2007)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call