Abstract
Tree growth and survival differ strongly between canopy trees (those directly exposed to overhead light), and understory trees. However, the structural complexity of many tropical forests makes it difficult to determine canopy positions. The integration of remote sensing and ground-based data enables this determination and measurements of how canopy and understory trees differ in structure and dynamics. Here we analyzed 2 cm resolution RGB imagery collected by a Remotely Piloted Aircraft System (RPAS), also known as drone, together with two decades of bi-annual tree censuses for 2 ha of old growth forest in the Central Amazon. We delineated all crowns visible in the imagery and linked each crown to a tagged stem through field work. Canopy trees constituted 40% of the 1244 inventoried trees with diameter at breast height (DBH) > 10 cm, and accounted for ~70% of aboveground carbon stocks and wood productivity. The probability of being in the canopy increased logistically with tree diameter, passing through 50% at 23.5 cm DBH. Diameter growth was on average twice as large in canopy trees as in understory trees. Growth rates were unrelated to diameter in canopy trees and positively related to diameter in understory trees, consistent with the idea that light availability increases with diameter in the understory but not the canopy. The whole stand size distribution was best fit by a Weibull distribution, whereas the separate size distributions of understory trees or canopy trees > 25 cm DBH were equally well fit by exponential and Weibull distributions, consistent with mechanistic forest models. The identification and field mapping of crowns seen in a high resolution orthomosaic revealed new patterns in the structure and dynamics of trees of canopy vs. understory at this site, demonstrating the value of traditional tree censuses with drone remote sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.