Abstract

Human brain networks convey important insights in understanding the mechanism of many mental disorders. However, it is difficult to determine a universal optimal among various tractography methods for general diagnosis tasks. To address this issue, tentative studies, aiming at the identification of some mental disorders, make an effective concession by exploiting multi-modal brain networks. In this paper, we propose to predict the clinical measures as a more comprehensive and stable assessment of brain abnormalities. We develop a graph convolutional network (GCN) framework to integrate heterogeneous brain networks. Particularly, an adaptive pooling scheme is designed, catering to the modal structural diversity and sharing the advantages of locality, loyalty and likely as in standard convolutional networks. The experimental results demonstrate that our method achieves state-of-the-art prediction results, and validates the advantages of the utilization of multi-modal brain networks in that, more modals are always at least as good as the best modal, if not better.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call