Abstract

Candida bloodstream infection, i.e. candidemia, is the most frequently encountered life-threatening fungal infection worldwide, with mortality rates up to almost 50%. In the majority of candidemia cases, Candida albicans is responsible. Worryingly, a global increase in the number of patients who are susceptible to infection (e.g. immunocompromised patients), has led to a rise in the incidence of candidemia in the last few decades. Therefore, a better understanding of the anti-Candida host response is essential to overcome this poor prognosis and to lower disease incidence. Here, we integrated genome-wide association studies with bulk and single-cell transcriptomic analyses of immune cells stimulated with Candida albicans to further our understanding of the anti-Candida host response. We show that differential expression analysis upon Candida stimulation in single-cell expression data can reveal the important cell types involved in the host response against Candida. This confirmed the known major role of monocytes, but more interestingly, also uncovered an important role for NK cells. Moreover, combining the power of bulk RNA-seq with the high resolution of single-cell RNA-seq data led to the identification of 27 Candida-response QTLs and revealed the cell types potentially involved herein. Integration of these response QTLs with a GWAS on candidemia susceptibility uncovered a potential new role for LY86 in candidemia susceptibility. Finally, experimental follow-up confirmed that LY86 knockdown results in reduced monocyte migration towards the chemokine MCP-1, thereby implying that this reduced migration may underlie the increased susceptibility to candidemia. Altogether, our integrative systems genetics approach identifies previously unknown mechanisms underlying the immune response to Candida infection.

Highlights

  • Candida albicans (C. albicans) is an opportunistic fungus colonizing the skin and/or mucosae of approximately 70% of the population [1]

  • To reveal the cell type-specific immune response against Candida, scRNA-seq analysis was performed on peripheral blood mononuclear cells (PBMCs) from 6 individuals that were stimulated with Candida or RPMI control for 24h

  • In addition to identifying cell type-specific responses to Candida infection, we studied the effect of genetic variants on gene expression levels before and after Candida stimulation using previously published bulk RNA-seq data from PBMCs [7]

Read more

Summary

Introduction

Candida albicans (C. albicans) is an opportunistic fungus colonizing the skin and/or mucosae of approximately 70% of the population [1]. Disruption of the mucosal barrier or a compromised immune system of the host can increase susceptibility to Candida infections. This makes it the most common cause of hospital-acquired invasive fungal infections globally [2], with high mortality rates between 33% and 46% [3,4]. Adjuvant immunotherapy has been suggested as an important strategy to improve patient outcomes, but to implement this a better understanding of the immune response to Candida is required [5,6]. As genetics have a great impact on an individual’s immune response [7], knowledge on its impact to the anti-Candida response will be important as well for the implementation of such therapies

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.