Abstract

Municipal solid waste (MSW) is a persistent burden in many countries. The heterogeneous MSW characteristic requires a transition from the monotonous treatment strategy to a diversified low-carbon waste treatment configuration. Nevertheless, complex mathematical models hinder the policymakers from adopting scientific-based solutions in the decision-making process, and those models seldom link national greenhouse gas reduction targets to local waste policy targets. This study applies two approaches in constructing Carbon Emission Pinch Analysis to either optimize waste treatment system configurations while considering greenhouse gas reduction and waste policy targets or identify the maximum possible national greenhouse gas reduction based on a waste treatment system configuration. Among the seven types of waste treatment systems studied, the carbon emission factor of material recycling is the lowest (−0.19 t CO2-e/t MSW), whereas open landfill is the highest (0.72 t CO2-e/t MSW). The proposed ten waste treatment configurations indicate a 1.0–2.2% reduction of national greenhouse gas emissions, in which the best-case configuration (i.e., carbon sink scenario) contributes to 3.64% of the national electricity consumption in 2030. This study provides a compendious comparison of waste treatment systems integrated with greenhouse gas reduction and waste policy targets for a more circular MSW management in countries facing the waste disposal dilemma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.