Abstract

The current society has an increasing demand for poly(ethylene terephthalate) (PET). Due to its high crystallinity and hydrophobicity, PET could be hardly degraded for high-value utilization. Besides, the escalating accumulation of waste PET has also led to significant environmental issues. In this study, a convenient and cost-efficient industrial strategy featuring the integration of glycolysis and enzymatic catalysis has been developed for the selective conversion of PET into terephthalic acid (TPA), which provides a method for colored waste PET degradation. Without the need for complex purifying processes, the products of glycolysis directly initiate the next round of the enzymatic system. Through this system, a total yield of 72.47 % of bis-2-(hydroxyethyl) terephthalate(BHET) and mono-(2-hydroxyethyl) terephthalate(MHET) was produced by glycolysis loading sodium bicarbonate (NaHCO3) catalyst, and the enzyme system almost completely converted a substrate concentration of 100 g/L within 48 h, producing 50.36 g/L TPA. Besides, the product problem of pink color in the air after acidification caused by cobalt ions was solved by resin adsorption. In general, the glycolysis and enzymatic catalysis system in this study has prospects for commercial application due to its value for colored waste PET recycling, which reduces the environmental burden caused by waste PET.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.