Abstract
Inexpensive structured light sensors can capture rich information from indoor scenes, and scene labeling problems provide a compelling opportunity to make use of this information. In this paper we present a novel conditional random field (CRF) model to effectively utilize depth information for semantic labeling of indoor scenes. At the core of the model, we propose a novel and efficient plane detection algorithm which is robust to erroneous depth maps. Our CRF formulation defines local, pairwise and higher order interactions between image pixels. At the local level, we propose a novel scheme to combine energies derived from appearance, depth and geometry-based cues. The proposed local energy also encodes the location of each object class by considering the approximate geometry of a scene. For the pairwise interactions, we learn a boundary measure which defines the spatial discontinuity of object classes across an image. To model higher-order interactions, the proposed energy treats smooth surfaces as cliques and encourages all the pixels on a surface to take the same label. We show that the proposed higher-order energies can be decomposed into pairwise sub-modular energies and efficient inference can be made using the graph-cuts algorithm. We follow a systematic approach which uses structured learning to fine-tune the model parameters. We rigorously test our approach on SUN3D and both versions of the NYU-Depth database. Experimental results show that our work achieves superior performance to state-of-the-art scene labeling techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.