Abstract

Geometric programming has been applied in the problems of engineering design, economics and management science. The conventional deterministic geometric programming method requires precise single values for the coefficients and exponents of decision variables. However, there may exist uncertainty and impreciseness about the parameters as well as data in complex real-life problems. In such situations, the deterministic geometric programming method is inappropriate. In this paper, we integrate the deterministic geometric programming with rough set theory to propose a rough geometric programming method. Our proposed method has mainly three characteristics. Firstly, the coefficients in the objective function and constraints are rough variables. Secondly, the expected-value operator of rough variables is implemented. Thirdly, the method can determine both lower and upper bounds of the objective function at a specific trust level. Three illustrative examples are presented to demonstrate the efficacy of our novel method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.