Abstract

Aim To identify novel candidate genes and gene sets for diabetes. Methods We performed an integrative analysis of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTLs) data for diabetes. Summary data was driven from a large-scale GWAS of diabetes, totally involving 58,070 individuals. eQTLs dataset included 923,021 cis-eQTL for 14,329 genes and 4,732 trans-eQTL for 2,612 genes. Integrative analysis of GWAS and eQTLs data was conducted by summary data-based Mendelian randomization (SMR). To identify the gene sets associated with diabetes, the SMR single gene analysis results were further subjected to gene set enrichment analysis (GSEA). A total of 13,311 annotated gene sets were analyzed in this study. Results SMR analysis identified 6 genes significantly associated with fasting glucose, such as C11ORF10 (p value = 6.04 × 10−8), MRPL33 (p value = 1.24 × 10−7), and FADS1 (p value = 2.39 × 10−7). Gene set analysis identified HUANG_FOXA2_TARGETS_UP (false discovery rate = 0.047) associated with fasting glucose. Conclusion Our study provides novel clues for clarifying the genetic mechanism of diabetes. This study also illustrated the good performance of SMR approach and extended it to gene set association analysis for complex diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.