Abstract

Dysfunctional pancreatic islet beta cells are a hallmark of type 2 diabetes (T2D), but a comprehensive understanding of the underlying mechanisms, including gene dysregulation, is lacking. Here we integrate information from measurements of chromatin accessibility, gene expression and function in single beta cells with genetic association data to nominate disease-causal gene regulatory changes in T2D. Using machine learning on chromatin accessibility data from 34 nondiabetic, pre-T2D and T2D donors, we identify two transcriptionally and functionally distinct beta cell subtypes that undergo an abundance shift during T2D progression. Subtype-defining accessible chromatin is enriched for T2D risk variants, suggesting a causal contribution of subtype identity to T2D. Both beta cell subtypes exhibit activation of a stress-response transcriptional program and functional impairment in T2D, which is probably induced by the T2D-associated metabolic environment. Our findings demonstrate the power of multimodal single-cell measurements combined with machine learning for characterizing mechanisms of complex diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.