Abstract

An approach for the measurement of surface displacement fields in three dimensions is presented based on the combination of two-dimensional digital image correlation with fringe projection. Only a single RGB image is required at each deformation state, thereby allowing real-time data acquisition, which is achieved using red speckle and projected blue fringes that are captured in the single image and separated using a Bayer filter. The approach allows both a perpendicular alignment relative to a flat reference surface and self-calibration, i.e., no calibration object is employed. The minimum measurement uncertainty of such a system is found to be 0.0083±0.00239 and 0.0238±0.0068 mm, respectively, for the in-plane and out-of-plane displacements. The potential of the approach is demonstrated for an elastic membrane undergoing large (5 to 20 mm) applied out-of-plane displacements, and the results show no significant difference (<1%) in the measured in-plane displacement fields compared with a commercially available system for stereoscopic digital image correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.