Abstract

BackgroundMany agronomic traits have been bred into modern wheat varieties, but wheat (Triticum aestivum L.) continues to be vulnerable to heat stress, with high night-time temperature (HNT) stress shown to have large negative impact on yield and quality. Global mean temperature during the day is consistently warming with the minimum night temperature increasing at a much quicker pace. Currently, there is no system or method that allows crop scientists to impose HNT stress at key developmental stages on wheat or crops in general under field conditions, involving diverse genotypes and maintaining a dynamic temperature differential within the tents compared to the outside.ResultsThrough implementation of a side roll up and a top ventilation system, heaters, and a custom cyber-physical system using a Raspberry Pi, the heat tents were able to consistently maintain an elevated temperature through the night to differentiate heat stress impact on different genotypes. When the tents were placed in their day-time setting they were able to maintain ambient day-time temperature without having to be removed and replaced on the plots. Data averaged from multiple sensors over three consecutive weeks resulted in a consistent but small temperature difference of 0.25 °C within the tents, indicating even distribution of heat. While targeting a temperature differential of 4 °C, the tents were able to maintain an average differential of 3.2 °C consistently throughout the night-time heat stress period, compared to the outside ambient conditions. The impact of HNT stress was confirmed through a statistically significant yield reduction in eleven of the twelve genotypes tested. The average yield under HNT stress was reduced by 20.3% compared to the controls, with the highest reduction being 41.4% and a lowest reduction of 6.9%. Recommendations for fine-tuning the system are provided.ConclusionThis methodology is easily accessible and can be widely utilized due to its flexibility and ease of construction. This system can be modified and improved based on some of the recommendations and has the potential to be used across other crops or plants as it is not reliant on access to any hardwired utilities. The method tested will help the crop community to quantify the impact of HNT stress, identify novel donors that induce tolerance to HNT and help the breeders develop crop varieties that are resilient to changing climate.

Highlights

  • Many agronomic traits have been bred into modern wheat varieties, but wheat (Triticum aestivum L.) continues to be vulnerable to heat stress, with high night-time temperature (HNT) stress shown to have large negative impact on yield and quality

  • Heat tent The heat tents that were used for this specific project were built and used in previous studies to quantify high day-time temperature (HDT) effects on wheat and sorghum [8, 24, 25]

  • The main components in converting the HDT tents into HNT included the top vent, side roll vents, heating system, and a cyber-physical thermostat controller system operated by a Raspberry Pi

Read more

Summary

Introduction

Many agronomic traits have been bred into modern wheat varieties, but wheat (Triticum aestivum L.) continues to be vulnerable to heat stress, with high night-time temperature (HNT) stress shown to have large negative impact on yield and quality. Winter wheat (Triticum aestivum L.), with centuries of genetic improvement, has acquired a suite of favorable traits essential for adaptation to a wide range of environmental conditions. Further improvements benefitting from technological advances over the last century by introducing high yielding varieties, fertilizer, pesticides, and modern equipment, have resulted in translating wheat into one of the major staple cereals of the world. In spite of the dramatic increase in overall wheat production, the rate of increase in production is unable to meet the current or the predicted global demand for the future [3]. Even though the annual per capita consumption of wheat is expected to drop by about one percent, the overall annual consumption of wheat is predicted to increase by almost 90 Mt between 2014 and 2024, as a result of increasing population and demand from the biofuel industry [4]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call