Abstract

RNA interference (RNAi) not only plays an important role in drug discovery but can also be developed directly into drugs. RNAi high-throughput screening (HTS) biotechnology allows us to conduct genome-wide RNAi research. A central challenge in genome-wide RNAi research is to integrate both experimental and computational approaches to obtain high quality RNAi HTS assays. Based on our daily practice in RNAi HTS experiments, we propose the implementation of 3 experimental and analytic processes to improve the quality of data from RNAi HTS biotechnology: (1) select effective biological controls; (2) adopt appropriate plate designs to display and/or adjust for systematic errors of measurement; and (3) use effective analytic metrics to assess data quality. The applications in 5 real RNAi HTS experiments demonstrate the effectiveness of integrating these processes to improve data quality. Due to the effectiveness in improving data quality in RNAi HTS experiments, the methods and guidelines contained in the 3 experimental and analytic processes are likely to have broad utility in genome-wide RNAi research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.