Abstract
Visual-spatial attention involves modulations of activity in human visual cortex as indexed by electrophysiological and functional neuroimaging measures. Prior studies investigating the time course and functional anatomy of spatial attention mechanisms in visual cortex have used higher-order discrimination tasks with complex stimuli (e.g. symbol matching in bilateral stimulus arrays, or letter discrimination), or simple detection tasks but in the presence of complex distracting information (e.g. luminance detection with superimposed symbols as distractors). Here we tested the hypothesis that short-latency modulations of incoming sensory signals in extrastriate visual cortex reflect an early spatially specific attentional mechanism. We sought evidence of attentional modulations of sensory input processing for simple, isolated stimuli requiring only an elementary discrimination (i.e. size discrimination). As in prior studies using complex symbols, we observed attention-related changes in regional cerebral blood flow in extrastriate visual cortex that were associated with changes in event-related potentials at a specific latency range. These findings support the idea that early in cortical processing, spatially-specific attentional selection mechanisms can modulate incoming sensory signals based on their spatial location and perhaps independently of higher-order stimulus form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.