Abstract

Image segmentation algorithms are critical components of medical image analysis systems. This paper presents a novel and fully automated methodology for segmenting anatomical branching structures in medical images. It is a hybrid approach which integrates the Canny edge detection to obtain a preliminary boundary of the structure and the fuzzy connectedness algorithm to handle efficiently the discontinuities of the returned edge map. To ensure efficient localisation of weak branches, the fuzzy connectedness framework is applied in a sliding window mode and using a voting scheme the optimal connection point is estimated. Finally, the image regions are labelled as tissue or background using a locally adaptive thresholding technique. The proposed methodology is applied and evaluated in segmenting ductal trees visualised in clinical X-ray galactograms and vasculature visualised in angiograms. The experimental results demonstrate the effectiveness of the proposed approach achieving high scores of detection rate and accuracy among state-of-the-art segmentation techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.