Abstract

Integrated Assessment Models based on Computable General Equilibrium (IAM/CGE) and dynamic Material Flow Analysis (dynamic MFA) are two most widely used prospective model families to assess large-scale and long-term socioeconomic metabolism (SEM) and inform sustainable SEM transition. The latter approach could complement the former by a more explicit understanding of service provision, in-use stocks, and material cycles in a mass balanced framework. In this paper, we demonstrated this by integrating the dynamic MFA and CGE model approaches for the Chinese building sector from 2012 to 2030. Our results revealed the impacts of building stock dynamics on sectoral and economy-wide CO2 emissions: lower service saturation levels and later saturation time of building stock development could free up investment on buildings and accumulatively save up to 25.4 Gt in embodied CO2 emissions of the building construction sector, representing a 2.7-fold of 2012 countrywide CO2 emissions. However, the save-ups are partly compensated by an increase of embodied CO2 emissions in the other sectors due to economy-wide rebound effect (ca. 18.8 Gt or about 74%). The integrated model we developed could help ensure both mass and monetary balances, explore rebound effects in prospective modeling, and thus better understand the economy-wide consequences of infrastructure development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.