Abstract

Since neoadjuvant chemotherapy (NAC) has proven a benefit for locally advanced nasopharyngeal carcinoma (NPC), early response evaluation after chemotherapy is important to implement individualized therapy for NPC in the era of precision medicine. To determine the combined and independent contribution between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion kurtosis imaging (DKI) in the early monitoring of NAC response for NPC. Prospective. Fifty-three locally advanced NPC patients. Four examinations before and at 4, 20, and 40 days after NAC initiation were performed at 3T MRI including DCE-MRI and DKI (b values = 0, 500, 1000, 1500 s/mm2 ). DCE-MRI parameters (Ktrans [the volume transfer constant of Gd-DTPA], kep [rate constant], νe [the extracellular volume fraction of the imaged tissue], and νp [the blood volume fraction]) and DKI parameters (Dapp [apparent diffusion for non-Gaussian distribution] and Kapp [apparent kurtosis coefficient]) were analyzed using dedicated software. MRI parameters and their corresponding changes were compared between responders and nonresponders after one or two NAC cycles treatment using independent-samples Student's t-test or Mann-Whitney U-test depending on the normality contribution test and then followed by logistic regression and receiver operating characteristic curve (ROC) analyses. The responder group (RG) patients presented significantly higher mean Ktrans and Dapp values at baseline and larger , Δvp(0-4) , and ΔDapp(0-4) values after either one or two NAC cycles compared with the nonresponder group (NRG) patients (all P < 0.05). ROC analyses demonstrated the higher diagnostic accuracy of combined DCE-MRI and DKI model to distinguish nonresponders from responders after two NAC cycles than using DCE-MRI (0.987 vs. 0.872, P = 0.033) or DKI (0.987 vs. 0.898, P = 0.047) alone. Combined DCE-MRI and DKI models had higher diagnostic accuracy for NAC assessment compared with either model used independently. 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:1208-1216.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.