Abstract
Privacy has traditionally been a major motivation of distributed problem solving. One popular approach to enable privacy in distributed environments is to implement complex cryptographic protocols. In this paper, we propose a different, orthogonal approach, which is to control the quality and the quantity of publicized data. We consider the Open Constraint Programming model and focus on algorithms that solve Distributed Constraint Optimization Problems (DCOPs) using a local search approach. Two such popular algorithms exist to find good solutions to DCOP: DSA and GDBA. In this paper, we propose DSAB, a new algorithm that merges ideas from both algorithms to allow extensive handling of constraint privacy. We also study how algorithms behave when solving Utilitarian DCOPs, where utilitarian agents want to reach an agreement while reducing the privacy loss. We experimentally study how the utilitarian approach impacts the quality of the solution and of publicized data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.