Abstract

The deep sea (i.e., >200 m depth) is a highly dynamic environment where benthic ecosystems are functionally and ecologically connected with the overlying water column and the surface. In the aphotic deep sea, organisms rely on external signals to synchronize their biological clocks. Apart from responding to cyclic hydrodynamic patterns and periodic fluctuations of variables such as temperature, salinity, phytopigments, and oxygen concentration, the arrival of migrators at depth on a 24-h basis (described as Diel Vertical Migrations; DVMs), and from well-lit surface and shallower waters, could represent a major response to a solar-based synchronization between the photic and aphotic realms. In addition to triggering the rhythmic behavioral responses of benthic species, DVMs supply food to deep seafloor communities through the active downward transport of carbon and nutrients. Bioluminescent species of the migrating deep scattering layers play a not yet quantified (but likely important) role in the benthopelagic coupling, raising the need to integrate the efficient detection and quantification of bioluminescence into large-scale monitoring programs. Here, we provide evidence in support of the benefits for quantifying and continuously monitoring bioluminescence in the deep sea. In particular, we recommend the integration of bioluminescence studies into long-term monitoring programs facilitated by deep-sea neutrino telescopes, which offer photon counting capability. Their Photo-Multiplier Tubes and other advanced optical sensors installed in neutrino telescope infrastructures can boost the study of bioluminescent DVMs in concert with acoustic backscatter and video imagery from ultra-low-light cameras. Such integration will enhance our ability to monitor proxies for the mass and energy transfer from the upper ocean into the deep-sea Benthic Boundary Layer (BBL), a key feature of the ocean biological pump and crucial for monitoring the effects of climate-change. In addition, it will allow for investigating the role of deep scattering DVMs in the behavioral responses, abundance and structure of deep-sea benthic communities. The proposed approach may represent a new frontier for the study and discovery of new, taxon-specific bioluminescence capabilities. It will thus help to expand our knowledge of poorly described deep-sea biodiversity inventories and further elucidate the connectivity between pelagic and benthic compartments in the deep-sea.

Highlights

  • The deep sea (i.e., >200 m depth) is the largest biome of the planet

  • As the carbon interchange between the water column and the seabed is an ecosystem function which should be measured at temporal frequencies corresponding to the DVMs and the temporal responses of benthic species within and above the BBL, we provided a conceptual overview of technologies and protocols for the monitoring of bioluminescence

  • We focused on neutrino telescope assets as promising, temporally intensive monitoring sites, increasing their societal value through potential contributions toward fishery management, and merging the interest of two very broad communities: marine and astrophysical scientists

Read more

Summary

INTRODUCTION

The deep sea (i.e., >200 m depth) is the largest biome of the planet. It represents the 65% of the whole planet’s surface and contains more than 95% of the biosphere, with more than three quarters of the ocean’s surface projecting to depths below 3,000 m (Costello et al, 2010; Haddock et al, 2017; Sweetman et al, 2017). In the Eastern Mediterranean Sea, deep-sea cyclonic and anticyclonic events of shorter period (i.e., from quasi inertial to between 5 and 11 days; Rubino et al, 2012; Meccia et al, 2015), derived from bathymetric constraints of abyssal circulation patterns, have been detected, showing energetic episodes with current intensities that may reach up to 0.15 m s−1, effectively contributing to deep-sea mixing processes (Meccia et al, 2015) Episodic events such as benthic storms, increasing bottomwater turbidity in the deep ocean, are primarily created by deep cyclones and can take place at different temporal and spatial scales. MONITORING DIEL BIOLOGICAL RHYTHMS ALONG THE CONTINENTAL MARGIN AND AT ABYSSAL AREAS

Background
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.