Abstract
The Internet of Things (IoT) refers to a network where different smart devices are interconnected through the Internet. This network enables these devices to communicate, share data, and exert control over the surrounding physical environment to work as a data-driven mobile computing system. Nevertheless, due to wireless networks' openness, connectivity, resource constraints, and smart devices' resource limitations, the IoT is vulnerable to several different routing attacks. Addressing these security concerns becomes crucial if data exchanged over IoT networks is to remain precise and trustworthy. This study presents a trust management evaluation for IoT devices with routing using the cryptographic algorithms Rivest, Shamir, Adleman (RSA), Self-Adaptive Tasmanian Devil Optimization (SA_TDO) for optimal key generation, and Secure Hash Algorithm 3-512 (SHA3-512), as well as an Intrusion Detection System (IDS) for spotting threats in IoT routing. By verifying the validity and integrity of the data exchanged between nodes and identifying and thwarting network threats, the proposed approach seeks to enhance IoT network security. The stored data is encrypted using the RSA technique, keys are optimally generated using the Tasmanian Devil Optimization (TDO) process, and data integrity is guaranteed using the SHA3-512 algorithm. Deep Learning Intrusion detection is achieved with Convolutional Spiking neural network-optimized deep neural network. The Deep Neural Network (DNN) is optimized with the Archimedes Optimization Algorithm (AOA). The developed model is simulated in Python, and the results obtained are evaluated and compared with other existing models. The findings indicate that the design is efficient in providing secure and reliable routing in IoT-enabled, futuristic, smart vertical networks while identifying and blocking threats. The proposed technique also showcases shorter response times (209.397 s at 70% learn rate, 223.103 s at 80% learn rate) and shorter sharing record times (13.0873 s at 70% learn rate, 13.9439 s at 80% learn rate), which underlines its strength. The performance metrics for the proposed AOA-ODNN model were evaluated at learning rates of 70% and 80%. The highest metrics were achieved at an 80% learning rate, with an accuracy of 0.989434, precision of 0.988886, sensitivity of 0.988886, specificity of 0.998616, F-measure of 0.988886, Matthews Correlation Coefficient (MCC) of 0.895521, Negative predictive value (NPV) of 0.998616, False Positive Rate (FPR) of 0.034365, and False Negative Rate (FNR) of 0.103095.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.