Abstract

PurposeStereotactic radiotherapy (SRT) has transformed cancer treatment, especially for brain metastases. Ensuring accurate SRT delivery is crucial, with the Winston-Lutz test being an important quality control tool. Off-axis Winston-Lutz (OAWL) tests are designed for accuracy assessment, but most are limited to fixed angles and hampered by local-field shifts caused by suboptimal Multi-Leaf Collimator (MLC) positioning. This study introduces a new OAWL approach for quality control in multi-brain-metastasis SRT. Utilizing cine Electronic Portal Imaging Device (EPID) images, it can be used with dynamic conformal arc (DCA) therapy. However, dynamic OAWL (DOAWL) is prone to more local-field shifts due to dynamic MLC movements. A two-step DOAWL is proposed: step 1 calculates local-field shifts using dynamic MLC movements in the beam-eye view data from the Treatment Planning System (TPS), while step 2 processes cine EPID images with an OAWL algorithm to isolate true deviations. MethodsValidation involved an anthropomorphic head phantom with metallic ball-bearings, Varian TrueBeam STx accelerator delivering six coplanar/non-coplanar DCA beams, cine EPID, and ImageJ's OAWL analysis algorithm. ResultsInherent local-field shifts ranged from 0.11 to 0.49 mm; corrected mean/max EPID-measured displacement was 0.34/1.03 mm. Few points exceeded 0.75/1.0-mm thresholds. ConclusionsThis two-step DOAWL test merges cine-EPID acquisitions, DCA, OAWL, and advanced analysis and offers effective quality control for multi-brain-metastasis SRT. Its routine implementation may also improve physicist knowledge of the treatment precision of their machines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call