Abstract

This chapter addresses active fault tolerant control (FTC) of engineering systems represented by a mode switching linear time-invariant model. The presented approach integrates bond graph-based fault diagnosis and inverse simulation through solving a differential algebraic (DAE) system in order to reconstruct a system input after a severe fault has occurred.In this chapter, bond graph (BG) representations of hybrid models use switches. The standard causality assignment procedure (SCAP) is used to assign fixed causalities disregarding switch modes. Equations deduced from a BG are formulated in the declarative modelling language Modelica®; as a hybrid DAE system. Causality changes at switch ports are taken into account by the Modelica implementation of switches.As to fault detection, it is known that residuals of analytical redundancy relations (ARRs) deduced offline from a diagnostic bond graph (DBG) can serve as fault indicators. It is shown that they can also be used for estimating the magnitude of parametric faults in some simple cases.Moreover, ARR residuals can also be used in the reconstruction of a system input that compensates a severe fault. To that end, the forward model of the healthy system with nominal parameters derived from a BG is considered a DAE system of the inverse model. The output of the forward model of the healthy system in response to the initial known system input serving as the desired system output of the faulty system and the ARR residuals are inputs into the inverse model. Based on these inputs the DAE system then determines the input into the faulty system required for fault accommodation. As ARR residuals are used, fault isolation and estimation are not needed for input reconstruction. Alternatively, if isolation and estimation of the faulty parameter have been performed it can replace the nominal parameter in the inverse model and ARRs as inputs can be omitted.Computation of the forward model of the healthy system, the inverse model and the evaluation of the ARRs can be performed in parallel. Advantages of the presented approach based on ARRs and inverse simulation are that neither ARRs nor the reconstructed input are needed in closed analytical form. If constitutive equations of some elements do not permit an elimination of unknown variables, a DAE system deduced from a DBG has to be solved numerically in order to determine the ARR residuals used in the process of input reconstruction. The latter one also means to solve a DAE system numerically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.