Abstract

Efficient catalytic system with low energy consumption exhibits increasing importance due to the upcoming energy crisis. Given this situation, it should be an admirable strategy for reducing energy input by effectively utilizing incident solar energy as a heat source during catalytic reactions. Herein, aza-fused π-conjugated microporous polymer (aza-CMP) with broad light absorption and high photothermal conversion efficiency was synthesized and utilized as a support for bimetallic AuPd nanocatalysts in light-driven benzyl alcohol oxidation. The AuPd nanoparticles anchored on aza-CMP (aza-CMP/AuxPdy) exhibited excellent catalytic performance for benzyl alcohol oxidation under 50 mW/cm2 light irradiation. The improved catalytic performance by the aza-CMP/AuxPdy is attributed to the unique photothermal effect induced by aza-CMP, which can promote the catalytic benzyl alcohol oxidation occurring at AuPd. This work presents a novel approach to effectively utilize solar energy for conventional catalytic reactions through photothermal effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.