Abstract

Viscosity represents a key product quality indicator but has been difficult to measure in-process in real-time. This is particularly true if the process involves complex mixing phenomena operated at dynamic conditions. To address this challenge, in this study, we developed an innovative soft sensor by integrating advanced artificial neural networks. The soft sensor first employs a deep learning autoencoder to extract information-rich process features by compressing high-dimensional industrial data and then adopts a heteroscedastic noise neural network to simultaneously predict product viscosity and associated uncertainty. To evaluate its performance, predictions of product viscosity were made for a number of industrial batches operated over different seasons. Furthermore, probabilistic machine learning techniques, including the Gaussian process and the Bayesian neural network, were selected to benchmark against the heteroscedastic noise neural network. Through comparison, it is found that the proposed soft-sensor has both high accuracy and high reliability, indicating its potential for process monitoring and quality control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.