Abstract
Predictive maintenance is a critical task for ensuring the reliability and efficiency of industrial systems. The integration of artificial intelligence (AI) and mathematical models has shown great potential in improving the accuracy and efficiency of predictive maintenance. This study provides an overview of the different types of mathematical models used for predictive maintenance, including physics-based, data-driven, and hybrid models. The study also discusses how AI techniques, such as machine learning and deep learning, can be used to enhance the accuracy and efficiency of predictive maintenance models. Additionally, the article highlights some of the challenges and limitations of integrating AI and mathematical models for predictive maintenance in industrial systems. Finally, this study provides a case study to demonstrate the practical application of the integrated approach for predictive maintenance in an industrial setting. This article aims to provide a comprehensive overview of the state-of-the-art in integrating AI and mathematical models for predictive maintenance and to provide guidance for researchers and practitioners working in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.