Abstract

In-vehicle buses and the Controller Area Network (CAN) in particular have been shown to be vulnerable to adversarial actions. We embed adversary models and intrusion detection systems (IDS) inside a CANoe based application. Based on real-world CAN traces collected from several vehicles we build attack traces that are subject to intrusion detection algorithms. We also take benefit from existing machine-learning support in MATLAB that is ported via C++ code in CANoe in order to integrate intrusion detection functionality. A unified framework for attacks and intrusion detection has the benefit of providing a testbed for various intrusion detection algorithms. CANoe integration makes the use of these functionalities ready for realistic testing as CANoe is an industry-standard tool in the automotive domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.