Abstract

Background Medical robotics, particularly image- guided robotic systems, have revolutionized the surgical field by improving precision and accuracy. 3D Slicer(1), an open-source platform, has become a crucial tool in this field as it allows for visualization, processing, and registration of 2D and 3D medical imaging data, making it an essential component in current research in robotic intervention(2) (3). However, there is a missing compo- nent in 3D Slicer - a native physics engine for simulating the interaction of a robot with the anatomy. AMBF(4), an open-source software, was designed to address this issue by simulating the kinematics, dynamics, and in- teraction of complex surgical robots. By integrating 3D Slicer and AMBF using Robot Operating System (ROS), we can empower researchers to utilize both the extensive capabilities of 3D Slicer for visualization, processing, and registration of medical imaging data, and the physics- based constraint of AMBF for simulating the interac- tion of a robot with the anatomy. By combining these two platforms, researchers will have a comprehensive tool to study and develop projects in medical robotics, ulti- mately contributing to the advancement of the field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call