Abstract

The high energy consumption and excessive waste activated sludge (WAS) production have become the major concerns on the municipal wastewater treatment with conventional biological processes. To tackle these emerging issues, this study demonstrated the feasibility of a novel process integrating an upflow anaerobic fixed-bed reactor (UAFBR) followed by a continuous step-feed reactor for mainstream deammonification towards improved energy efficiency, minimized sludge production and cost-effective ammonium removal. The results showed that 48.8% of the influent chemical oxygen demand (COD) was directly converted to methane gas in UAFBR with minimized sludge production, while 80% of total nitrogen (TN) was removed in the step-feed reactor. Mass balance on the step-feed reactor revealed that the oxic chambers contributed 51.6% of the removed ammonium oxidation to mainly nitrite, while the produced nitrite was immediately removed via anammox with the ammonium supplied by the step-feed in the following anoxic chambers where about 87.1% TN removal occurred. Moreover, it was found that sustainable repression of nitrite oxidizing bacteria (NOB) was achieved without compromising the activity of ammonia oxidizing bacteria (AOB). The anammox bacteria were effectively retained in the anoxic chambers and showed a high specific anammox activity of 0.42 g N/(g VSS·day). These suggest that the step-feed configuration can offer a feasible engineering option towards single-stage mainstream deammonification. It appears that the integrated process developed in this study sheds light on the possible way towards sustainable, energy self-sufficient municipal wastewater reclamation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call