Abstract
This paper presents the design, fabrication, and numerical modeling of two new uniplanar microstrip-to-coplanar strip (CPS) line transitions and a new variant of the linearly tapered slot antenna (LTSA). This new variant with an integrated uniplanar microstrip-to-coplanar strip line feed is called a V-LTSA. The advantages of these transitions in packaging and monolithic microwave integrated circuits (MMIC) integration are listed. The two transitions and the feed are modeled using finite difference time domain (FDTD) method. The overall agreement between the measured and modeled return-loss and insertion-loss characteristics of two back-to-back transitions is good. The resonance frequencies predicted by the FDTD method are within a few percentage points of the measurements. Furthermore, the V-LTSA with the feed is experimentally shown to have a wide return loss (/spl les/-10 dB) bandwidth, good radiation patterns, and low cross-polarization. The gain of the V-LTSA is 9 dB at the design frequency of 10 GHz. A proof-of-concept package to house the feed is experimentally evaluated and shown to have negligible effect on the antenna characteristics. This type of antenna readily integrates with MMIC packages in an array having a brick architecture. The V-LTSA has potential applications in phased arrays. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.