Abstract

Abstract With the increasing need for large volumes of data processing, transport, and storage, optimizing the trade-off between high-speed and energy consumption in today’s optoelectronic devices is getting increasingly difficult. Heterogeneous material integration into silicon- and nitride-based photonics has showed high-speed promise, albeit at the expense of millimeter-to centimeter-scale footprints. The hunt for an electro-optic modulator that combines high speed, energy efficiency, and compactness to support high component density on-chip continues. Using a double-layer graphene optical modulator integrated on a Silicon photonics platform, we are able to achieve 60 GHz speed (3 dB roll-off), micrometer compactness, and efficiency of 2.25 fJ/bit in this paper. The electro-optic response is boosted further by a vertical distributed-Bragg-reflector cavity, which reduces the driving voltage by about 40 times while maintaining a sufficient modulation depth (5.2 dB/V). Modulators that are small, efficient, and quick allow high photonic chip density and performance, which is critical for signal processing, sensor platforms, and analog- and neuromorphic photonic processors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call