Abstract
Benzene exposure is known to cause serious damage to the human hematopoietic system. However, recent studies have found that chronic benzene exposure may also cause neurological damage, but there were few studies in this issue. The aim of this study was to investigate the mechanism of damage to the central nervous system (CNS) by chronic benzene exposure with a multi-omics analysis. We established a chronic benzene exposure model in C57BL/6J mice by gavage of benzene-corn oil suspension, identified the differentially expressed proteins (DEPs) and differentially expressed genes (DEGs) in mice brain using 4D Label-free proteomic and RNA-seq transcriptomic. We observed that the benzene exposure mice had a significant loss of body weight, reduction in complete blood counts, abnormally high MRI signals in brain white matter, as well as extensive brain edema and neural demyelination. 162 DEPs were identified by the proteome, including 98 up-regulated and 64 down-regulated proteins. KEGG pathway analysis of DEPs showed that they were mainly involved in the neuro-related signaling pathways such as metabolic pathways, pathways of neurodegeneration, chemical carcinogenesis, Alzheimer disease, and autophagy. EPHX1, GSTM1, and LIMK1 were identified as important candidate DEGs/DEPs by integrated proteomic and transcriptomic analyses. We further performed multiple validation of the above DEGs/DEPs using fluorescence quantitative PCR (qPCR), parallel reaction monitoring (PRM), immunohistochemistry, and immunoblotting to confirm the reliability of the multi-omics study. The functions of these DEGs/DEPs were further explored and analyzed, providing a theoretical basis for the mechanism of nerve damage caused by benzene exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.