Abstract
The putative methyltransferase Lae1 is a global regulator in Trichoderma, which modulates the expression of secondary metabolite gene clusters, possibly via chromatin remodeling. Here we aimed to explore the specific transcription and metabolites profiles regulated by Lae1 in T. atroviride 23. Comparative transcriptomics and metabolome analyses between the lae1 deletion (Mlae1) and over-expressing (Olae1) mutants were performed using RNA sequencing and QTOF-UPLC-MS techniques. In total, 1344 unique differentially expressed genes (DEGs) and 92 metabolites were identified across three strains. The significantly altered metabolic profiles revealed that the lae1 gene modulates central carbon metabolism, amino acid metabolism, secondary metabolism, and phospholipid metabolism. The effects of lae1 on phospholipid metabolism were further explored, and the findings showed that lae1 modulates the composition and function of cell membranes and other metabolic activities, including the phosphotransferase system (PTS) and biosynthesis of secondary metabolites (SM). Phospholipid metabolism is related to energy metabolism, signal transduction, and environmental adaptability of microorganisms. These data showed that Lae1 affects the primary metabolites, phospholipid, as well as the regulation of secondary metabolites in Trichoderma. This study could potentially provoke in-depth investigations of the Lae1-mediated target genes in phospholipid synthesis. The Lae1 may act as a novel target that is associated with disease defense and drug development in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.