Abstract

Most Nelumbo nucifera (lotus) flower buds were aborted during the growing season, notably in low-light environments. How lotus produces so many aborted flower buds is largely unknown. An integrated transcriptome and targeted metabolite analysis was performed to reveal the genetic regulatory networks underlying lotus flower bud abortion. A total of 233 miRNAs and 25,351 genes were identified in lotus flower buds, including 68 novel miRNAs and 1108 novel genes. Further enrichment analysis indicated that sugar signaling plays a potential central role in regulating lotus flower bud abortion. Targeted metabolite analysis showed that trehalose levels declined the most in the aborting flower buds. A potential regulatory network centered on miR156 governs lotus flower bud abortion, involving multiple miRNA-mRNA pairs related to cell integrity, cell proliferation and expansion, and DNA repair. Genetic analysis showed that miRNA156-5p-overexpressing lotus showed aggravated flower bud abortion phenotypes. Trehalose-6-P synthase 1 (TPS1), which is required for trehalose synthase, had a negative regulatory effect on miR156 expression. TPS1-overexpression lotus showed significantly decreased flower bud abortion rates both in normal-light and low-light environments. Our study establishes a possible genetic basis for how lotus produces so many aborted flower buds, facilitating genetic improvement of lotus’ shade tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call