Abstract

The world is witnessing an unprecedented generation and accumulation of fiber-plastic wastes resulting in various challenges due to inconsistency, waste-stream heterogeneity, conveying issues, self-heating, and difficulty in pelletization. This study presents a novel pilot-scale system that integrates torrefaction and extrusion to convert mix fiber-plastic waste into fuel pellets. The produced pellets have low cost, high heating value, better uniformity, and low environmental impact. They can be used as solid fuels or as feedstock for pyrolysis and gasification. To evaluate the pellet cost and its environmental impact, we performed Techno-Economic Analysis (TEA) and Life Cycle Assessment (LCA). The TEA integrates research findings from the torrefaction-extrusion project with the techno-economic models and estimates the costs, energy consumption, and mass balances for pelletizing and torrefaction. The analysis indicates that the baseline cost of producing uniform pellets is about $55.28/dry tonne (2020$). LCA results indicate that the torrefied product has cradle-to-gate embodied greenhouse gas emissions that are net negative, although they are higher than a comparable forest-derived woodchip product. Fossil energy demand for the torrefied product is lower than the forest-derived chip, indicating the torrefied product has strong potential for use as an environmentally beneficial feedstock for future processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.