Abstract
The design of high-performance mechatronic systems is very challenging, as it requires delicate balancing of system dynamics, the controller, and their closed-loop interaction. Topology optimization provides an automated way to obtain systems with superior performance, although extension to simultaneous optimization of both topology and controller has been limited. To allow for topology optimization of mechatronic systems for closed-loop performance, stability, and disturbance rejection (i.e. modulus margin), we introduce local approximations of the Nyquist curve using circles. These circular approximations enable simple geometrical constraints on the shape of the Nyquist curve, which is used to characterize the closed-loop performance. Additionally, a computationally efficient robust formulation is proposed for topology optimization of dynamic systems. Based on approximation of eigenmodes for perturbed designs, their dynamics can be described with sufficient accuracy for optimization, while preventing the usual threefold increase of additional computational effort. The designs optimized using the integrated approach have significantly better performance (up to 350% in terms of bandwidth) than sequentially optimized systems, where eigenfrequencies are first maximized and then the controller is tuned. The proposed approach enables new directions of integrated (topology) optimization, with effective control over the Nyquist curve and efficient implementation of the robust formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.