Abstract
Satellite Laser Ranging (SLR) is one of the most precise and cost effective satellite positioning techniques, used for many years on geodetic, Earth observation and scientific satellites. In the last decades it has been applied on radio-navigation satellites as well, however still in a limited way. The benefits that such technique could bring to these satellites are many, but, in order to support at best their tracking, some improvements need to be done; one is the enhancement of optical response of SLR payloads throughout the orbit. INFN-LNF with the ASI-INFN project ETRUSCO-2 studied hardware and software solution to optimize the optical response of such payloads, with the design and fabrication of a GNSS Retroreflector Array (GRA). We simulated the performance of a model of the GRA in a specific orbit of Galileo, showing contained variation of optical intensity, approximately 5%, throughout the orbit. A comparison between two polarization states, linear and circular, proves how a circularly polarized beam could reduce, up to 3 times, intensity fluctuations at a fixed velocity aberration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.