Abstract
A systematic design methodology for proportional-integral-derivative (PID) controllers is presented. Starting from data sets, a model of the system and its uncertainty bounds are obtained. The parameters of the controller are tuned by a convex optimization algorithm, minimizing a weighted difference between the actual loop transfer function and a target in an /spl Lscr//sub 2///spl Lscr//sub /spl infin// sense. The target selection is guided by the identified model and its uncertainty. The problem of disjoint data sets and/or different models for the same system is also addressed. The method has proved successful in numerous practical cases showing both expediency in controller design and implementation and improved performance over existing controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.