Abstract

Atomic layer deposition (ALD) is a promising nanotechnology for wide applications in microelectronics manufacturing due to its ability to control layer growth at atomic scale. Sustainability of ALD technology needs to be quantitatively investigated in this early development stage to improve its economic and environmental performance. In this paper, we present an integrated sustainability analysis of ALD technology through material and energy flow analyses. The study is performed on the ALD of Al2O3 high-κ dielectric film through trimethylaluminum and water binary reactions. The precursor utilizations, methane emissions, and nanowaste generations from the ALD process are all quantitatively studied. Energy flow analysis demonstrates that the ALD process energy consumption is mainly determined by the ALD cycle time rather than the process temperature. Scale-up performance of the ALD technology is also studied for both emission generations and energy consumptions. Strategies and methods for improving the sustainability performance of the ALD technology are suggested based on the analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.