Abstract

In recent years, several strategies have been developed and adopted in a bid to manage the biofuel supply chain. In this paper, a two-stage optimization model is proposed for integrated microalgae biofuel supply chain network design and superstructure optimization problems. In the first stage, the design of the carbon capture, utilization, and storage (CCUS) network is taken into account. A robust mixed integer linear programming (RMILP) model is proposed to optimize the strategic CCUS decisions, including the simultaneous selection of emission sources, capture facilitates, Carbon Dioxide (CO2) pipelines, intermediate transportation sites and storage sites, or microalgae cultivation sites. The second stage is dedicated to biorefinery superstructure optimization in order to determine the optimal/promising biorefinery configurations. The presented model is able to handle the inherent uncertainty of critical input parameters. Moreover, the results show that biodiesel production cost cannot compete with current diesel price, but it can be reduced significantly by improving biomass productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.